Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease.

نویسندگان

  • Melanie D White
  • Michael Farmer
  • Ilaria Mirabile
  • Sebastian Brandner
  • John Collinge
  • Giovanna R Mallucci
چکیده

Prion diseases are fatal neurodegenerative conditions for which there is no effective treatment. Prion propagation involves the conversion of cellular prion protein, PrP(C), to its conformational isomer, PrP(Sc), which accumulates in disease. Here, we show effective therapeutic knockdown of PrP(C) expression using RNAi in mice with established prion disease. A single administration of lentivirus expressing a shRNA targeting PrP into each hippocampus of mice with established prion disease significantly prolonged survival time. Treated animals lived 19% and 24% longer than mice given an "empty" lentivirus, or not treated, respectively. Lentivirally mediated RNAi of PrP also prevented the onset of behavioral deficits associated with early prion disease, reduced spongiform degeneration, and protected against neuronal loss. In contrast, mice receiving empty virus or no treatment developed early cognitive impairment and showed severe spongiosis and neuronal loss. The focal use of RNAi therapeutically in prion disease further supports strategies depleting PrP(C), which we previously established to be a valid target for prion-based treatments. This approach can now be used to define the temporal, quantitative, and regional requirements for PrP knockdown for effective treatment of prion disease and to explore mechanisms involved in predegenerative neuronal dysfunction and its rescue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapy for prion diseases: Insights from the use of RNA interference.

Insights into the molecular basis and the temporal evolution of neurotoxicity in prion disease are increasing, and recent work in mice leads to new avenues for targeting treatment of these disorders. Using lentivirally mediated RNA interference (RNAi) against native prion protein (PrP), White et al. report the first therapeutic intervention that results in neuronal rescue, prevents symptoms and...

متن کامل

Targeting Cellular Prion Protein Reverses Early Cognitive Deficits and Neurophysiological Dysfunction in Prion-Infected Mice

Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now...

متن کامل

Dysfunction and recovery of synapses in prion disease: implications for neurodegeneration.

Synaptic dysfunction is a key early process in many neurodegenerative diseases, but how this ultimately leads to neuronal loss is not clear. In health, there is ongoing remodelling of synapses and spines in the adult brain: their elimination and formation are continual physiological processes fundamental to learning and memory. But in neurodegenerative disease, including prion disease, lost syn...

متن کامل

DLP1‐dependent mitochondrial fragmentation and redistribution mediate prion‐associated mitochondrial dysfunction and neuronal death

Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin-like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria beca...

متن کامل

RNAi: a novel strategy for the treatment of prion diseases.

Prion disease refers to a group of fatal transmissible neurodegenerative diseases for which no pharmacological treatment is available. The cellular prion protein (PrP(C)) is required for both prion replication and pathogenesis, and reducing PrP(C) levels has been shown to extend survival time after prion infection. RNA interference (RNAi) is a sequence-specific posttranscriptional gene silencin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 29  شماره 

صفحات  -

تاریخ انتشار 2008